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Abstract

In this paper we reformulate the frictional contact problem for elasto-plastic bodies as a set of unconstrained, non-

smooth equations. The equations are semi-smooth so that Pang’s Newton method for B-differentiable equations can be

applied. An algorithm based on this method is described in detail. An example demonstrating the efficiency of the

algorithm is presented. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The design of efficient and robust algorithms for frictional contact problems is an important task in
computational solid mechanics. In Klarbring (1992, 1993) the discrete, time-incremental, linear elastic,
frictional contact problem was reformulated as a set of unconstrained equations. The reason for using an
unconstrained reformulation is to enable Newton methods to be used for solving the equations. Since the
equations obtained are non-smooth, a standard Newton method is not applicable. However, it was ob-
served that the equations are at least B-differentiable, so that Pang’s Newton method for B-differentiable
equations (Pang, 1990) may be used to solve the frictional contact problem. This method was implemented
in Str€oomberg (1997) (including wear), and subsequently in Christensen et al. (1998), and showed excellent
performance and robustness. Later, in Christensen and Pang (1998), it was shown that the non-smooth
reformulation of the constitutive laws of frictional contact is even semi-smooth, a stronger property than
B-differentiability. A general Newton algorithm for constrained semi-smooth equations was developed,
which, for unconstrained equations has Pang’s Newton method as a special case. Using the semi-
smoothness, the convergence results for Pang’s Newton method could be strengthened.

In this work we will extend the method in Christensen et al. (1998) and Christensen and Pang (1998) to
elasto-plastic frictional contact problems. Only J2-plasticity will be considered, i.e. the von Mises yield
function together with an associated flow rule is assumed. We will use the radial return method to obtain
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the Gauss point stresses as functions of the displacements. The standard way this method is employed for
plasticity problems, is to insert the stresses into the equilibrium equations and solve these using a standard
Newton method, possibly using a heuristic line search in order to improve the robustness, see e.g. Simo and
Hughes (1998). However, the stresses are not smooth functions of the displacements, so strictly speaking a
standard Newton method cannot be applied. We will, however, pay attention to the non-smooth character
of the plasticity equations and use a non-smooth Newton method to solve the governing equations. In
Christensen (2002) it was recognized, for the case of linear hardening, that the radial return method yields
the stresses as piecewise smooth functions of the displacements. Since piecewise smooth functions are semi-
smooth, the plasticity problem may be solved using a semi-smooth Newton method. Since also the contact
equations are semi-smooth, it follows that the frictional contact problem for elasto-plastic bodies may be
described by semi-smooth equations. Thus, Pang’s Newton method is applicable for this problem as well.

The paper is organized as follows: In the next section we present the governing equations for quasi-static,
small-strain, rate-independent J2-plasticity, and the small-displacement frictional contact problem. Time
and space discretizations are performed in order to formulate the discrete, time-incremental, elasto-plastic
frictional contact problem. In Section 3 the laws of contact are rewritten as a set of unconstrained semi-
smooth equations. Section 4 presents a modified semi-smooth Newton method to solve the problem. A
numerical example is presented in Section 5, which demonstrates the efficiency of our algorithm.

2. Problem formulation

Consider two two-dimensional bodies loaded in plane strain, A and B, see Fig. 1. Body A is a fixed
rigid foundation, whereas body B is elasto-plastic. We assume that all strains and displacements are small.
Our aim is to determine stresses, displacements, strains and contact tractions as functions of time for a
prescribed loading history when inertia effects may be neglected. The fact that body A is considered rigid is
for notational simplicity only; under the assumption of small displacements there is no significant math-
ematical difference between problems where both bodies are flexible and those where one of the bodies is
rigid. Although we will present the theory for the case of plane strain, generalization to three-dimensional
problems is straightforward.

Let body B occupy the region X � R2 and divide the boundary oX in three disjoint parts St, Su and Sc.
The body is subjected to prescribed tractions ~tt on St, on Su the displacements are fixed, and Sc represents the

Fig. 1. The two bodies considered.
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potential contact surface. To simplify notation, we assume that there are no non-zero prescribed dis-
placements (however, in the numerical example in Section 5, some displacements are in fact prescribed).
For each point on the boundary of the foundation A, we define an inward normal direction n and a
tangential direction t. The location of a point x is represented in a fixed Cartesian frame, and the com-
ponents of x are denoted xi, i ¼ 1, 2. For all tensor expressions in component form, the summation con-
vention will be adopted for repeated indices.

2.1. Equilibrium equations

Under the assumption of no body forces, the equilibrium equations for body B are written as

orij
oxj
¼ 0 in X; ð1Þ

ui ¼ 0 on Su; rijmj ¼ ~tti on St; rijmj ¼ �pi on Sc; ð2Þ
where i, j ¼ 1, 2, r is the Cauchy stress, u is the displacement field, m is the outward unit normal of body
B and p is the contact traction. As a consequence of the small-displacement assumption, the surface
of the foundation and the contact surface may be regarded as parallel, i.e. m � n (Kikuchi and Oden,
1988).

2.2. Constitutive laws of plasticity

Body B is assumed to be made of an elasto-plastic material with rate-independent behavior, obeying the
von Mises yield criterion with an associate flow rule. For simplicity, we assume only linear isotropic
hardening. In the elastic domain, linear isotropic behavior is assumed. Thus, the stress r is related to the
elastic strain �e through Hooke’s law

rij ¼ Ce
ijkl�

e
kl; ð3Þ

where the elasticity tensor Ce is given by

Ce
ijkl � ~kkdijdkl þ ~llðdikdjl þ dildjkÞ; ð4Þ

where dij denotes Kronecker’s delta, and ~kk and ~ll are the two Lam�ee constants. The stress tensor may be
decomposed into a deviatoric part, sij � ðdevrÞij ¼ rij � ð1=3Þrkkdij, and a dilatational part dij � ðdilrÞij ¼
ð1=3Þrkkdij. From (3) and (4) we obtain

dij ¼ ~jj�ekkdij; ð5Þ

sij ¼ 2~lleeij; ð6Þ

where ee is the deviatoric elastic strain, and ~jj � ~ccþ ð2=3Þ~ll is the bulk modulus. The total strain � is written
as the sum of the elastic strain �e and the plastic strain �p:

�ij ¼ �eij þ �pij; ð7Þ

where � is related to u according to

�ij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
: ð8Þ
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The plastic strain rate is determined from the flow rule

_��pij ¼ _cc
sij
jjsjj ; ð9Þ

where the dot denotes differentiation with respect to time, and jjsjj � ffiffiffiffiffiffiffiffiffi
sijsij
p

. Plastic flow cannot occur in the
elastic domain E � fðr; aÞ : f ðr; aÞ < 0Þg, where a is a hardening variable and f is the yield function

f ðr; aÞ � jjsjj �
ffiffiffi
2

3

r
KðaÞ:

For linear isotropic hardening, K is written

KðaÞ � ry þ ka; ð10Þ

where ry is the yield stress and kP 0. The yield function and the flow parameter _cc satisfy a set of com-
plementarity conditions

f ðr; aÞ6 0; _cc P 0; f ðr; aÞ _cc ¼ 0: ð11Þ

The hardening parameter a is chosen to be the equivalent plastic strain, so that its evolution is governed by

_aa ¼ _cc

ffiffiffi
2

3

r
: ð12Þ

2.3. Constitutive laws of contact

The laws of contact are of two types; normal contact laws and friction laws. The normal contact law
used here is that of Signorini:

pn P 0; un 6 g; pnðun � gÞ ¼ 0 on Sc; ð13Þ

where the normal contact pressure pn ¼ pini, the normal displacement un ¼ uini on Sc, and g is the initial gap
between bodies A and B. We may rewrite (13) as

pn 2Kn : ðun � gÞðqn � pnÞ6 0 8qn 2Kn; ð14Þ

where

Kn � fpn : pn P 0g:

As the friction law we choose Coulomb’s law which can be stated using the principle of maximum dissi-
pation:

pt 2FðlðpnÞþÞ : _uutðqt � ptÞ6 0 8qt 2FðlðpnÞþÞ; ð15Þ

where the tangential contact traction pt ¼ piti, the tangential displacement ut ¼ uiti on Sc, l is the friction
coefficient,

FðzÞ � fpt : jptj6 zg; for zP 0;

and zþ � maxð0; zÞ.

2.4. Time discretization

The strong form of the quasi-static frictional contact problem for elasto-plastic bodies may now be
written in the following way. For a given loading history s 7!~ttðsÞ on a time interval s 2 ½0;T�, find the
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functions s 7!uðx; sÞ, s 7! �ðx; sÞ, s 7!rðx; sÞ, s 7! �eðx; sÞ, s 7! �pðx; sÞ, s 7!aðx; sÞ, s 7!pnðxc; sÞ and s 7!ptðxc; sÞ
for all x 2 B and xc 2 Sc, such that (1)–(3), (7)–(9), (11), (12), (14) and (15) are satisfied for all s 2 ½0;T�.

In order to solve this problem numerically, we have to perform discretizations in space and time. The
space discretization will be discussed in Section 2.5, whereas the time discretizations of the constitutive laws
of plasticity and frictional contact are discussed next.

2.4.1. Time discretization of the plasticity equations, radial return
Let the time interval ½0;T� be divided into sub-intervals. For each sub-interval, ½sk; skþ1�, say, the

variables u, r, �p, a, pn and pt are assumed to be known at time sk. The plastic strain rate is approximated by
a backward Euler time discretization according to

_��pijðskþ1Þ �
�pij � ���pij

Ds
;

where Ds � skþ1 � sk, �
p
ij � �pijðskþ1Þ and ���pij � �pijðskÞ. Similarly, we obtain for _aa and _cc

_aaðskþ1Þ �
a� �aa
Ds

; _ccðskþ1Þ �
Dc
Ds

;

where Dc � cðskþ1Þ � cðskÞ.
Insertion of these time discretized expressions into the flow rule (9) and (12) makes it possible to obtain

the stress as a function of the displacement using the so-called radial return method (Simo and Hughes,
1998). Eqs. (9) and (12) in time-discretized form become

�pij ¼ ���pij þ Dc
sij
jjsjj ; ð16Þ

a ¼ �aaþ
ffiffiffi
2

3

r
Dc: ð17Þ

An elastic trial deviatoric stress is obtained from (6) and (7) by assuming that no plastic flow occurs during
the increment under investigation, i.e. �p ¼ ���p:

strij � 2~llðeij � ���pijÞ; ð18Þ

where eij is the deviatoric total strain, and we have also used the fact that the plastic strain is deviatoric, cf.
(9). The real deviatoric stress may then be obtained from (18) and (16) as

sij ¼ 2~llðeij � �pijÞ ¼ 2~llðeij � ���pijÞ � 2~llð�pij � ���pijÞ ¼ strij � 2~llDcn̂nij; ð19Þ

where n̂nij � sij=jjsjj. It remains to determine the flow parameter Dc. If jjstrjj6
ffiffi
2
3

q
Kð�aaÞ, then Dc ¼ 0, as the

assumption of elastic response is correct in this case. Otherwise, Dc can be obtained by using the condition

ksk �
ffiffi
2
3

q
K �aaþ

ffiffi
2
3

q
Dc

� �
¼ 0. It follows from (19) that s and str are colinear, i.e. n̂nij ¼ strij=jjstrjj, which in-

serted into (19) gives

sij ¼ ðjjstrjj � 2~llDcÞn̂nij:
If this equation is (scalar) multiplied with n̂nij, we obtain

jjsjj ¼ jjstrjj � 2~llDc;

where jjsjj ¼
ffiffi
2
3

q
K �aaþ

ffiffi
2
3

q
Dc

� �
. Solving for Dc, we obtain

Dc ¼
jjstrjj �

ffiffi
2
3

q
Kð�aaÞ

2~llþ 2
3
k

:
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The total stress may now be obtained as rij ¼ dij þ sij, where the dilatational stress, dij, is given in (5):

rij ¼
~jj�kkdij þ strij if jjstrjj6

ffiffi
2
3

q
Kð�aaÞ;

~jj�kkdij þ 1
2~llþ2

3
k

2
3
kstrij þ 2~ll

ffiffi
2
3

q
Kð�aaÞ strij

jjstrjj

� �
otherwise:

8<: ð20Þ

It is noted that r is a function of the displacements since str depends only on the total deviatoric strain, and
the strain in turn is obtained from the displacement from (8).

2.4.2. Time discretization of Coulomb’s law
The tangential velocity, _uut, is also approximated by a backward Euler time discretization:

_uutðskþ1Þ �
ut � �uut

Ds
;

where ut � utðskþ1Þ and �uut � utðskÞ. Coulomb’s law (15) may then be written in time discretized form as

pt 2FðlðpnÞþÞ : ðut � �uutÞðqt � ptÞ6 0 8qt 2FðlðpnÞþÞ:

2.5. Finite element approximation

A variational formulation of the incremental elasto-plastic frictional contact problem with the dis-
placements and contact tractions as variables reads as follows: Given ���, �aa, �uut and ~ttðskþ1Þ, find u, pn and pt
that satisfyZ

X

ovi
oxj

rij dV þ
Z
Sc

vipi dS �
Z
St

vi~tti dS ¼ 0 8v 2V; ð21Þ

Z
Sc

ðun � gÞðqn � pnÞdS6 0 8qn 2Kn; ð22Þ

Z
Sc

ðut � �uutÞðqt � ptÞdS6 0 8qt 2FðlðpnÞþÞ; ð23Þ

where

V � fv : v ¼ 0 on Sug;

and r ¼ rðuÞ satisfies (20).
The finite element discretization of the first and last terms in (21) is standard and will not be discussed

here, see (1987) for a detailed account. The integrals over the potential contact surface are approximated asZ
Sc

hdS �
Xnc
m¼1

ImhðxmÞ; ð24Þ

where Im are weighting factors and nc is the number of integration points xm. We choose xm to coincide with
the finite element nodes of body B on Sc, i.e. nc is the number of nodes on Sc, and let the weights Im be
determined by the trapezoidal rule for linear elements and Simpson’s rule for quadratic elements. Appli-
cation of the space discretization results in the following discretized version of the equilibrium equations
(21):

H eqðU ; Pn; PtÞ � F int þ CT
n Pn þ CT

t Pt � F ext ¼ 0; ð25Þ
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where the vector of nodal displacements is denoted U 2 Rnd , and nd is the total number of degrees of
freedom in the finite element mesh. The matrices Cn 2 Rnc�nd and Ct 2 Rnc�nd are transformation matrices
relating the normal, Un, and tangential displacements, Ut, for the contact nodes, respectively:

Un ¼ CnU ; Ut ¼ CtU :

The normal and tangential contact forces are denoted Pn and Pt, respectively:

Pn � ½P 1
n ; . . . ; P

nc
n �

T
; Pmn � ImpnðxmÞ; m ¼ 1; . . . ; nc;

Pt � ½P 1
t ; . . . ; P

nc
t �

T; Pmt � ImptðxmÞ; m ¼ 1; . . . ; nc;

where T denotes the transpose of a matrix. The forces F int and F ext are obtained from

F int � A
ne

e¼1
f int
e ; F ext � A

ne

e¼1
f ext
e ;

where A denotes the finite element assembly operator. The element external load f ext
e is obtained from the

traction ~tt in a standard manner, see Hughes (1987), and the element internal load is written

f int
e �

Xni;e
i¼1
ðBi;eÞTri;ewi;eJ i;e;

where ni;e is the number of Gauss points in element e, and B
i;e
is the B-bar matrix evaluated at Gauss point i

(in natural coordinates) of element e. The B-bar matrix replaces the standard strain displacement matrix in
order to prevent locking due to the incompressibility induced by plastic deformation. In our implemen-
tation we have used the mean dilatation formulation; see Hughes (1987) for an explicit expression of the
B-bar matrix. The approximated stress obtained from (20) at Gauss point i of element e is denoted
ri;e ¼ ½ri;e11; r

i;e
22; r

i;e
33; r

i;e
12�

T
, wi;e is the integration point weight at Gauss point i of element e, and J i;e is the

determinant of the Jacobian for the transformation from the global system to the local system of element e
evaluated at Gauss point i. For each Gauss point i of element e, the strain is determined from the element
displacement vector U e 2 Rnde , where nde is the number of degrees of freedom for element e, as

�i;e ¼ B
i;e
U e;

where �i;e ¼ ½�i;e11; �
i;e
22; �

i;e
33; 2�

i;e
12�

T
.

The approximation of Signorini’s law (22) takes the form

ðUn � GÞTðQn � PnÞ6 0 8Qn 2Kh
n; ð26Þ

where G � ½g1; . . . ; gnc �T, with gm � gðxmÞ, and Kh
n � fPn : Pmn P 0;m ¼ 1; . . . ; ncg. Coulomb’s law (23) is

approximated as

ðUt � U tÞTðQt � PtÞ6 0 8Qt 2FhðlðPnÞþÞ; ð27Þ

where FhðlðPnÞþÞ � fQt : jQm
t j6 lðPmn Þþ;m ¼ 1; . . . ; ncg. The discrete, time-discretized, elasto-plastic fric-

tional contact problem is now governed by (25)–(27). Our next aim is to rewrite (26) and (27) as equalities
so that a Newton method can be applied to solve the problem.

3. Formulation as a system of semi-smooth equations

The reformulation of the constitutive laws of frictional contact as a set of unconstrained equations has
been thoroughly described in Christensen et al. (1998) and Christensen and Pang (1998) for the three-
dimensional case. First, we note that Signorini’s law (26) is equivalent to
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HnðU ; PnÞ � minðPn; qn � ðG� UnÞÞ ¼ 0; ð28Þ
where qn ¼ ½q1

n;. . .; q
nc
n �

T
is a vector of given positive scalars, a � b is the vector whose components are aibi

(no summation), and the minimum operator is applied componentwise. Coulomb’s law (27) is easily re-
written as

ðPt þ r � ðUt � U tÞ � PtÞTðQt � PtÞ6 0 8Qt 2FhðlðPnÞþÞ;

where r ¼ ½r1;. . .; rnc �T is a vector of given positive scalars. This variational inequality may be written in
terms of a projection as, see Hiriart-Urruty and Lemar�eechal (1993)

HtðU ; Pn; PtÞ � Pt �P PtðrÞð Þ ¼ 0; ð29Þ
where PtðrÞ � Pt þ r � ðUt � U tÞ, and PðyÞ denotes the Euclidian projection of y onto FhðlðPnÞþÞ. The
projection P PtðrÞð Þ ¼ fPm Pmt ðrmÞ


 �
;m ¼ 1; . . . ; ncg, and for each m 2 f1; . . . ; ncg

Pm Pmt ðrmÞ

 �

¼
Pmt ðrmÞ if jPmt ðrmÞj6 lðPmn Þþ;
lðPmn Þþ

Pmt ðr
mÞ

jPmt ðrmÞj
otherwise;

(
which in turn can be written more compactly as

PmðPmt ðrmÞÞ � min
lðPmn Þþ
jPmt ðrmÞj

; 1

� �
Pmt ðrmÞ;

where 0/0 is defined to be 1. Our discrete, time-incremental, elasto-plastic frictional contact problem is thus
equivalent to the following unconstrained system of non-smooth equations:

0 ¼ HðU ; Pn; PtÞ �
F int þ CT

n Pn þ CT
t Pt � F ext

minðPn;qn � ðG� UnÞÞ
Pt �PðPtðrÞÞ

0@ 1A: ð30Þ

In Christensen and Pang (1998) it was proven that Hn and Ht are semi-smooth mappings. A function
H : Rn ! Rn is semi-smooth at �zz 2 Rn if it is Lipschitz continuous in a neighborhood of �zz, directionally
differentiable at �zz, and the directional derivative is sufficiently well behaved in that it satisfies the following
condition (Qi, 1993):

lim
h!0

H 0ð�zzþ h; hÞ � H 0ð�zz; hÞ
jjhjj ¼ 0;

where H 0ð�zz; hÞ is the directional derivative at �zz in the direction h.
In Christensen (2002), it was recognized that the radial return mapping in (20) is piecewise smooth (Pang

and Qi, 1995) which implies that it is also semi-smooth (Chaney, 1990). Consequently, H eq is semi-smooth,
and, thus, H is semi-smooth. We remark that for linear elastic contact problems, H eq is an affine function,
so that the non-smoothness of H then only stems from the contact equations. In contrast, for the elasto-
plastic contact problem studied here, the equilibrium equations are non-smooth as well, since H eq is a non-
smooth function of the displacements.

4. A semi-smooth Newton method

During the last 10–15 years, a large number of Newton methods for non-smooth equations have evolved.
Naturally, one tries to establish strong convergence results under assumptions which are as weak as pos-
sible. For a non-smooth function F : Rn ! Rn which is only locally Lipschitz continuous, one cannot es-
tablish any convergence results for a Newton method. If F is assumed to be B-differentiable, i.e. locally
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Lipschitz continuous and directionally differentiable, then it is possible to design a Newton method with
proven convergence properties. In Pang (1990), a damped Newton method for B-differentiable equations
was proposed, algorithm BN. Global convergence and local quadratic convergence to strongly F-differ-
entiable (Ortega and Rheinboldt, 1970) solution points was established. In order to be able to prove
convergence even to non-smooth solution points, however, F needs to be semi-smooth. We will use Pang’s
algorithm BN with improved convergence results for semi-smooth equations to solve the semi-smooth
system in (30) for a specific time increment. We refer to Christensen and Pang (1998) for a discussion of
the convergence results of this algorithm. In short, quadratic convergence to solution points which are
strongly F-differentiable with a non-singular Jacobian and a Lipschitz continuous directional derivative,
and linear convergence to so-called BD-regular solution points (Qi, 1993) is established. A step-by-step
description of algorithm BN is given below. We let z denote the tuple ðU ; Pn; PtÞ, and dz the direction
ðdU ; dPn; dPtÞ.

4.1. Description of algorithm BN

Step 1 (Initialization): Let ~bb, ~rr and ~ee be given scalars with ~bb 2 ð0; 1Þ, ~rr 2 ð0; 1
2
Þ and ~ee > 0 small. Set

k ¼ 0. Let zk be given.
Step 2 (Direction generation): Solve the directional Newton equation to obtain the direction dzk:

H 0ðzk;dzkÞ ¼ �HðzkÞ: ð31Þ

Step 3 (Step size determination): Let sk � ~bbmk , where mk is the smallest non-negative integer m for which
the following decrease criterion holds:

Hðzk þ ~bbm dzkÞ6 ð1� 2~rr~bbmÞHðzkÞ; ð32Þ

where the merit function H is obtained as

HðzkÞ � 1

2
HðzkÞTHðzkÞ:

Set zkþ1 � zk þ sk dzk.
Step 4 (Termination check): If Hðzkþ1Þ6 ~ee, terminate with zkþ1 as an approximate zero of H . Otherwise,

return to Step 2 with k  k þ 1.
Evidently, the only difference between algorithm BN and a standard damped Newton method for

smooth equations lies in the generation of a search direction. At differentiable points zk, the directional
derivative satisfies H 0ðzk;dzkÞ ¼ rHðzkÞdzk where rHðzkÞ denotes the Jacobian of H at zk. Thus, at dif-
ferentiable points, the directional Newton equation (31) is linear in the search direction dzk. However, at
non-differentiable points, where the Jacobian does not exist, the directional derivative is non-linear in the
search direction; see Christensen et al. (1998) for the rather complex expression of the directional derivative
for the elastic contact problem. Thus, a drawback with algorithm BN is that, for non-differentiable points, a
system of non-linear equations has to be solved. For our application, the non-differentiable points are

points with Pmn ¼ 0, Pmn þ qmn ðCm
nU � gmÞ ¼ 0, jPmt ðrmÞj ¼ lPmn > 0, and jjstrjj ¼

ffiffi
2
3

q
Kð�aaÞ. Hence, the non-

differentiable states are all described by equalities. Consequently, the chance that an iterate ends up at a
non-differentiable point is very small. This motivates us to use a simplified version of algorithm BN, where
the directional derivative H 0ðzk; dzkÞ is replaced with eHH 0ðzk; dzkÞ ¼ NðzkÞdzk, so that eHH 0ðzk; dzkÞ is linear in
dzk, and thus only a system of linear equations has to be solved in order to obtain the search direction dzk.
This modification has previously been used to a very good effect for elastic contact problems in Str€oomberg
(1997), Christensen et al. (1998) and Christensen and Pang (1998), and it is our experience that it works
equally well for the elasto-plastic contact problems studied here, see Section 5. If (31) is solved exactly, the
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search direction obtained is guaranteed to be a descent direction for the merit function. However, with our
simplified directional Newton equation, the search direction may not be a descent direction for the merit
function in the event that an iterate does end up at a non-differentiable point. Hence, the line search in (32)
might jam. In our implementation of the line search, see the pseudo-code below, we use a lower bound on
the step size which prevents the line search from jamming. This implementation has proven to work well in
our extensive testing for elastic contact problems and also for the elasto-plastic contact problems in this
work. We would like to point out that even if non-differentiable points are hit, e.g. at the first iteration of an
increment if the starting point satisfies Pmn ¼ 0 for some contact node m, the performance of the algorithm
does not deteriorate. The main practical reason for adopting this lower bound on the step size is that even
for differentiable points, the step size which satisfies (32) might be so small that it is computationally more
efficient to accept a larger step size.

Explicitly, the directional derivative of H eq is replaced by the following simplified expression, linear in
dU (and dPn and dPt):eHH eq0 � K dU þ CT

n dPn þ CT
t dPt;

where

K � A
ne

e¼1

Xni;e
i¼1
ðBi;eÞTCi;e

epB
i;e
wi;eJ i;e;

and Ci;e
ep is the consistent elasto-plastic tangent modulus, obtained by differentiating the stress in (20) with

respect to strain. The result is (omitting Gauss point and element number), see Simo and Hughes (1998):

Cep ¼
~jj~11~11T þ 2~llðI � 1

3
~11~11TÞ if jjstrjj6

ffiffi
2
3

q
Kð�aaÞ;

~jj~11~11T þ 2~llb1ðI � 1
3
~11~11TÞ � 2~llb2n̂nn̂n

T otherwise;

8<:
where

b1 � 1� 2~llDc
jjstrjj ; b2 �

2~ll
2~llþ 2

3
k
� ð1� b1Þ;

and ~11 � ½1; 1; 1; 0�T, n̂n ¼ ½n̂n11; n̂n22; n̂n33; n̂n12�T, str ¼ ½str11; str22; str33; str12�
T
, and I � diag½1; 1; 1; 1

2
�. Thus, for the non-

differentiable points where jjstrjj ¼
ffiffi
2
3

q
Kð�aaÞ, Cep is simply put to the Hooke’s (elasticity) matrix.

Before presenting the approximations of H 0n and H 0t , we note that the contact equations obviously only
depend on the displacements of the contact nodes, Uc, and not on the displacements of the other nodes, Uo.
It is therefore advantageous to eliminate dUo from the equationeHH eq0 ðzk; dzkÞ ¼ �H eqðzkÞ; ð33Þ

by means of static condensation, before determining ðdUc; dPn; dPtÞ. First, we note that we may write
Un ¼ CnU ¼ CnUc, where Cn 2 Rnc�2nc is obtained from Cn by deleting (zero) columns corresponding to
nodes not on the contact surface. Introducing the matrix Ct in a similar manner, (33) may be written

Ko;o Ko;c

KT
o;c Kc;c

� �
dUo

dUc

� �
þ 0

C
T

ndPn

� �
þ 0

C
T

t dPt

� �
¼ � H eq

o

H eq
c

� �
: ð34Þ

Eliminating dUo from the above, results in

Kc dUc þ C
T

n dPn þ C
T

t dPt ¼ �Fc; ð35Þ

where
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Kc ¼ Kc;c � KT
o;cK

�1
o;oKo;c;

Fc ¼ H eq
c � KT

o;cK
�1
o;oH

eq
o :

Once dUc has been calculated (see below), dUo is obtained as

dUo ¼ �K�1o;oðH eq
o þ Ko;c dUcÞ: ð36Þ

Note that (34) is not to be interpreted literally; there is no need to partition the nodes with contact nodes
last. In fact, if a profile (skyline) solver (Felippa, 1975) is used to perform the condensation this would
increase the size of the profile with larger memory requirement and longer computing times as a result.

Returning to the simplified directional derivatives of the mappings Hn and Ht, we first let C
m
n denote row

m of Cn, C
m
t row m of Ct, and define the following sets:

I6 � fm : Pmn þ qmn ðC
m
nUc � gmÞ6 0g;

I> � fm : Pmn þ qmn ðC
m
nUc � gmÞ > 0g;

J
6
� fm : Pmn > 0; jPmt ðrmÞj6 lPmn g;

J> � fm : Pmn > 0; jPmt ðrmÞj > lPmn g;
K � fm : Pmn 6 0g;

where

Pmt ðrmÞ � Pmt þ rmðC
m
t Uc � C

m
t U cÞ:

Let zc denote the tuple ðUc; Pn; PtÞ and dzc the direction ðdUc; dPn; dPtÞ. The simplified expression for
directional derivatives of the condensed equilibrium equations together with the contact equations reads

eHH 0cðzc; dzcÞ �
Kc dUc þ C

T

n dPn þ C
T

t dPt
ðdPmn Þm2I6

ð�qmnC
m
n dUcÞm2I>

ðdPmt Þm2K
ð�rmCm

t dUcÞm2J
6

dPmt � l sgnðPmt ðrmÞÞdPmn
� �

m2J>

0BBBBBBBBB@

1CCCCCCCCCA
; ð37Þ

where sgnðyÞ denotes the sign of y, i.e. þ1 if y > 0, �1 if y < 0 and 0 if y ¼ 0. We refer to Christensen et al.
(1998) and Christensen and Pang (1998) for the exact expressions of H 0n and H

0
t . In every iteration, we solve

the following system of linear equations for ðdUc; dPn; dPtÞ:eHH 0cðzc; dzcÞ ¼ �HcðzcÞ; ð38Þ

where HcðzcÞ � ½FcðzcÞ;HnðzcÞ;HtðzcÞ�T. The solvability of this equation (for the elastic case) is discussed in
Christensen and Pang (1998); if Kc is positive definite and l is sufficiently small, then (38) has a unique
solution.

For convenience, we next summarize our algorithm to solve the discrete, time-incremental, elasto-plastic
frictional contact problem in pseudo-code. In the description of the radial return method, algorithm RR,
subscripts indicating the Gauss point number have been dropped, and Trw ¼ w11 þ w22 þ w33. The com-
putation of the consistent tangent modulus Cep is of course only performed prior to solving (38) in each
iteration, and not for every line search. In the description of the modified B-differentiable Newton method,
algorithm BNM, subscript I indicates the Gauss point number, of which there are nI in the whole finite
element mesh.
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Algorithm RR (radial return)

Element displacements U e, �aa and ���p given.
Compute total strain:

� ¼ B
e
U e

Compute trial stress:
e ¼ �� 1

3
Tr �~11

str ¼ 2~llIðe� ���pÞ
Check yield condition:

f tr ¼ jjstrjj �
ffiffi
2
3

q
Kð�aaÞ

if f tr
6 0 then

r ¼ str þ ~jjTr �~11
a ¼ �aa
�p ¼ ���p

Cep ¼ ~jj~11~11T þ 2~llðI � 1
3
~11~11TÞ

else
Calculate flow parameter Dc:
Dc ¼ f tr

2~llþ2
3
k

Calculate n̂n and update the hardening parameter:
n̂n ¼ str

jjstrjj
a ¼ �aaþ

ffiffi
2
3

q
Dc

Update plastic strain and stress:
�p ¼ ���p þ DcI�1n̂n
r ¼ str þ ~jjTr �~11� 2~llDcn̂n
Calculate the consistent elasto-plastic tangent modulus:
b1 ¼ 1� 2~ll Dc

jjstrjj
b2 ¼ 2~ll

2~llþ2
3
k
� ð1� b1Þ

Cep ¼ ~jj~11~11T þ 2b1~llðI � 1
3
~11~11TÞ � 2~llb2n̂nn̂n

T

end if

Algorithm BNM (modified BN method)

~bb 2 ð0; 1Þ, ~rr 2 ð0; 1
2
Þ, ~ee > 0 small, mmax, z0, U c, ���

p
I and �aaI , I ¼ 1; . . . ; nI given.

k ¼ 0
Get stresses for each Gauss point I:
rIðUkÞ ¼ RRðUk; �aaI ; ���

p
I Þ

Calculate error:
HðzkÞ ¼ 1

2
HðzkÞTHðzkÞ

where H is obtained from (30).
while HðzkÞ > ~ee do

Perform static condensation to the contact surface to obtain Kc and Fc in (35).
Solve the linear Newton equation (38) to obtain the direction dzkc:eHH 0cðzc; dzcÞ ¼ �HcðzcÞ
where eHH 0cðzc;dzcÞ and HcðzcÞ are given in (37), (38), (35), (28) and (29).
Get dUo from (36).
m ¼ 0
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Get stresses for displacement Uk þ dUk for each Gauss point I:
rIðUk þ dUkÞ ¼ RRðUk þ dUk; �aaI ; ���

p
I Þ

Armijo line search:
while Hðzk þ ~bbm dzkÞ > ð1� 2~rr~bbmÞHðzkÞ & m6mmax do
m ¼ mþ 1
Get stresses for displacement Uk þ ~bbm dUk for each Gauss point I:
rIðUk þ ~bbm dUkÞ ¼ RRðUk þ ~bbm dUk; �aaI ; ���

p
I Þ

end while

zkþ1 ¼ zk þ ~bbm dzk

k ¼ k þ 1
end while

Update U c, and ���pI and �aaI for each Gauss point I, for next increment:
U c ¼ Uc ���pI ¼ �pI �aaI ¼ aI

5. Numerical example

We have implemented algorithm BNM in our development code l Solve (Christensen, 2000), which is
written in modern Fortran 95. The geometry and loads are defined in our graphical Matlab pre-processor,
which produces an input file which is read by the Fortran program. Matlab is then automatically called
from within the Fortran program to produce plots as requested in the input file. The static condensation to
the contact surface in (35) is done using our own skyline solver routines, whereas the non-symmetric system
of linear equations in (38) is solved using LAPACK routines (Anderson et al., 1995). The time to perform
the static condensation in each iteration dominates the total computing time, so that (38) is solved directly
without further eliminating variables in order to reduce the size of the system actually solved, as was done
to good effect for elastic contact problems in our previous paper Christensen and Pang (1998).

The parameters of algorithm BNM are set as follows: The line search parameters are ~bb ¼ 0:6 and
~rr ¼ 0:2. In our treatments of elastic contact problems in Christensen et al. (1998) and Christensen and Pang
(1998), we used ~bb ¼ 0:9 and ~rr ¼ 0:1, but these parameters are not well suited for elasto-plastic problems as
they give a large number of line searches, and, more seriously, often twice the number of iterations. In order
to prevent jamming of the algorithm, a maximum number of line searches is set to mmax ¼ 5, so that the
minimum step size becomes ~bbmmax ¼ 0:0778.

A guide line for choosing the parameters qmn , m ¼ 1; . . . ; nc, in the reformulation of Signorini’s law (28),
is to view qmn as a scaling factor between Pmn ¼ Impn and gm � C

m
nUc. For the example that follows below, the

maximum normal contact pressure pn is of the order 105, and the maximum gap gm � Cm
nUc is of the order

10�2. Thus, qmn ¼ 107Im represents a good choice. For the approximation of integrals on the contact surface
in (24), we use the trapezoidal rule, so that

Im ¼
Xfm
j¼1

lmj
2
; m ¼ 1; . . . ; nc;

where fm is the number of finite elements adjacent to contact node m, and lmj is the length of the jth element
adjacent to contact node m. For our example the lengths of the contact elements vary with the fineness of
the mesh from 0.1 to 1 m. For simplicity we have used qmn ¼ 106, m ¼ 1; . . . ; nc, and use the same value for
the parameters rm in the reformulation of Coulomb’s law (29): rm ¼ 106, m ¼ 1; . . . ; nc. For the example we
have studied, qmn and rm may be varied within a wide range without significantly changing the number of
iterations (one should keep in mind, though, that the error norm used depends on these parameters, so that
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a direct performance comparison is not possible unless an error norm independent on these parameters is
used).

The starting point for the first increment of algorithm BNM is u ¼ 0 except for the prescribed dis-
placements which are put to their respective prescribed value, Pmt ¼ 0 and Pmn ¼ 10�10, m ¼ 1; . . . ; nc. The
reason for not putting Pmn ¼ 0, is that this represents a non-differentiable point, although we would like to
stress that the performance of the algorithm would not be affected if Pmn ¼ 0 were chosen. For subsequent
increments, the starting point for increment j is set to the solution of increment j� 1. The termination
tolerance is ~ee ¼ 10�10, which represents a very severe stopping criterion.

5.1. Plugged sheet

In this example a sheet of dimension 36� 20 m2 with a circular hole of radius 5 m in the middle, is
subjected to a prescribed vertical displacement d of the top and bottom boundaries of the sheet. Only a
quarter of the sheet is studied due to symmetry, see Fig. 2. This structure is divided into two regions, which
are both discretized by n� n elements, where n ¼ 4, 8, 16 or 32. The sheet is discretized by four-noded
bilinear finite elements with Young’s modulus 70 MPa and Poisson’s ratio 0.2, which implies that ~ll ¼ 29:17
MPa and ~jj ¼ 38:89 MPa. The B-matrices are calculated using the mean dilatation formulation (Hughes,
1987). Linear isotropic hardening with ry ¼ 0:243 MPa and k ¼ 2:24 MPa in (10) is considered. The load
varies according to Fig. 2 during (a fictive) time 0 to 8 time units. The load is applied in 4� inc increments,
where inc ¼ 1, 2, 4, or 8. For the case n ¼ 32, inc is also put to 16. The circular hole is initially completely
filled up by a rigid cylinder of radius 5 m, i.e. the initial gap, gm ¼ 0, m ¼ 1; . . . ; nc. The friction coefficient is
l ¼ 0:0, 0.3 or 0.9.

In Table 1, the average number of line searches, nls, per increment, as well as the average number of
iterations, nle, per increment are presented. As seen, for the frictionless case with n ¼ 32 and inc ¼ 1,
nle ¼ 9.8 and nls ¼ 8:0. In order to determine whether the contact equations or the plasticity equations are
the most difficult to satisfy, we put ry ¼ 243 GPa, so that elastic behavior is obtained, which gives nle ¼ 3:3
and nls ¼ 0. If instead, we put gm ¼ 0.1 m, m ¼ 1; . . . ; nc, so that no contact occurs, then nle ¼ 7.8 and
nls ¼ 7:8. As expected, ry ¼ 243 GPa and gm ¼ 0:1 m, gives nle ¼ 1 and nls ¼ 0. Since we have always
used the line search parameters ~bb ¼ 0:9 and ~rr ¼ 0:1 previously, for elastic contact problems, we present an
example illustrating their inefficiency for elasto-plastic problems. For l ¼ 0:9, n ¼ 32 and inc ¼ 1,
nle ¼ 14:3 and nls ¼ 15:0, cf. Table 1. If ~bb ¼ 0:9 and ~rr ¼ 0:1 are used, then nle ¼ 29:3 and nls ¼ 237
(minimum step size in line search is put to 0.1). If we put ry ¼ 243 GPa here (elastic behavior), then
nle ¼ 7:3 and nls ¼ 6.0 with our new parameters, and nle ¼ 7.0 and nls ¼ 15.0 with ~bb ¼ 0:9 and ~rr ¼ 0:1.

Fig. 2. Geometry for the plugged-sheet problem.
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Fig. 3. Total error H (––), Heq (� � �), Hn (– – –), and Ht (–�–�–) for n ¼ 8, inc ¼ 1 and l ¼ 0:3.

Table 1

Execution statistics

n inc l ¼ 0:0 l ¼ 0:3 l ¼ 0:9

nle nls nle nls nle nls

1 6.8 3.0 8.3 5.0 6.8 2.8

4 2 4.0 0.8 5.0 4.3 5.4 7.0

4 3.1 0.4 3.6 2.1 2.8 1.8

8 2.8 0.0 3.3 1.3 2.4 0.9

1 6.8 4.3 8.3 5.3 8.5 8.5

8 2 5.9 4.4 8.0 9.1 6.3 4.5

4 4.1 0.9 5.1 4.7 4.9 4.6

8 3.0 0.3 3.7 1.7 3.3 2.0

1 8.8 10.0 11.0 11.8 8.8 8.8

16 2 6.6 4.9 7.8 6.6 7.9 7.1

4 6.4 4.9 7.1 7.2 7.6 6.7

8 4.6 1.9 5.5 4.0 5.5 4.7

1 11.3 14.8 12.0 12.5 14.3 15.0

2 8.5 8.4 8.8 7.5 10.8 11.3

32 4 6.8 4.9 7.6 5.1 8.6 9.0

8 6.8 4.9 7.8 6.8 8.3 8.2

16 4.8 1.8 5.6 2.9 6.0 4.5
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Thus, the two parameter settings give equal performance for elastic behavior. The variation of the error
during the iterations for l ¼ 0.3, n ¼ 8 and inc ¼ 1, is shown in Fig. 3. We have found it illustrative to
present not only the total error H, but also the error corresponding to the equilibrium equations Heq, the
error of the normal contact equations Hn, and the error of the friction equations Ht, where

Fig. 4. Contact tractions for various instants in time for n ¼ 32, inc ¼ 16 and l ¼ 0:3. Elasto-plastic case: (––): pn; (� � �): pt. Elastic case:
(––): pn; (–�–�–): pt. The coordinate s is defined in Fig. 2.
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Heq � 1

2
H eqTH eq; Hn �

1

2
HT

n Hn; Ht �
1

2
HT

t Ht:

As seen in the figure, the total error decreases in each iteration for a given increment. In fact, this is the-
oretically guaranteed provided no iterates end up at non-differentiable points. The contact tractions for
various instants in time are depicted in Fig. 4, for the case n ¼ 32, inc ¼ 16 and l ¼ 0:3. In order to vi-
sualize the influence of elasto-plastic material behavior, the contact tractions obtained for the elastic case
with the same l are also presented. As the sheet is initially compressed, the time of first yield is t ¼ 1:625,
which explains why there is no difference between the elastic and elasto-plastic curves for t ¼ 1. At t ¼ 2 the
loading is reversed and the plastic flow stops. At t ¼ 4 the prescribed displacement is zero, and the gap is
positive at all contact nodes, and, thus, the contact tractions are zero. As the sheet is drawn out, plastic flow
starts again at t ¼ 5:25. At time t ¼ 6 the load is reversed again, and the flow stops. At time t ¼ 7:75, the
sheet loses contact with the cylinder. Note that the contact pressure for the elasto-plastic case looks very
different from the contact pressure for the elastic case for t ¼ 7. In Fig. 5, the normal contact pressure for
tP 6 is shown. The same entity is plotted for the frictionless case. In Endahl (1985), a similar problem with
an infinite elasto-plastic sheet plugged with a smooth elasto-plastic cylinder made of the same material as
the sheet, is analyzed. Our plots for the frictionless case show much resemblance to the plots in Endahl
(1985, p. 43). In Figs. 6 and 7, the von Mises stress at full compression (t ¼ 2) and full tension (t ¼ 6) is
shown both for the elastic as well as the elasto-plastic case.

Fig. 5. Normal contact pressure for various instants in time for n ¼ 32 and inc ¼ 16. Left figure: l ¼ 0; right figure: l ¼ 0:3. The
coordinate s is defined in Fig. 2.
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Fig. 6. The von Mises stress in Pa at t ¼ 2 (left) and t ¼ 6 (right) for n ¼ 32, inc ¼ 16, l ¼ 0:3, and elastic behavior.

Fig. 7. The von Mises stress in Pa at t ¼ 2 (left) and t ¼ 6 (right) for n ¼ 32, inc ¼ 16, l ¼ 0:3, and elasto-plastic behavior.
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6. Conclusions

In this paper we have reformulated the two-dimensional, discrete, time-incremental, elasto-plastic fric-
tional contact problem as a set of unconstrained semi-smooth equations. A damped Newton method with
proven global convergence properties for solving these equations is presented. In our implementation, a
slight modification of this method is used, where simplifications regarding iterates at non-differentiable
points are performed. This modified Newton method shows excellent performance and robustness. Three-
dimensional problems can be handled by the same method; see Christensen et al. (1998) and Christensen
and Pang (1998) for a semi-smooth reformulation of the constitutive laws of frictional contact in the three-
dimensional case.

Finally, we point out that our semi-smooth Newton method with its line search (which is different from
the ones usually used in finite element programs) obviously can be used for elasto-plastic problems not
involving contact as well.
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